Characterization of a novel fructosyltransferase InuCA from Lactobacillus crispatus that attaches to the cell surface by electrostatic interaction

Author:

Zhang Jie1,Li Lili12,Gu Shujie12,Teng Kunling1,Ren Jinwei23,Liu Guoxia4,Zhong Jin12ORCID

Affiliation:

1. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100039, China

3. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

4. CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Fructosyltransferases (FTases), a group of carbohydrate-active enzymes, synthesize fructooligosaccharides (FOS) and fructans, which are promising prebiotics for human health. Here we originally identified a novel FTase InuCA from L. crispatus , a dominant species in the vaginal microbiotas of human. InuCA was characterized by a shortest C-terminus and the highest isoelectric point among the reported Lactobacillus FTases. InuCA was an inulosucrase and produced a serial of FOS using sucrose as substrate at a moderate temperature. Surprisingly, the C-terminal deletion mutant synthesized oligosaccharides with fructosyl chain longer than that of the wild type, suggesting that the C-terminal part blocked the binding of long-chain receptor. Moreover, InuCA bound to the cell surface by electrostatic interaction, which was dependent on the environmental pH and represented a distinctive binding mode in FTases. The catalytic and structural properties of InuCA will be contributed to the FTases engineering and the knowledge of the adaptation of L. crispatus in the vaginal environment. Importance L. crispatus is one of the most important species in human vaginal microbiotas and its persistence is strongly negatively correlated with the vaginal diseases. Our research reveals that a novel inulosucrase InuCA is present in L. cirspatus . InuCA keeps the ability to synthesize prebiotic fructo-oligosaccharides, although it lacks a large part of the C-terminal region compared to other FTases. Remarkably, the short C-terminus of InuCA blocks the transfructosylation activity for producing oligosaccharides with longer chain, which is meaningful to the directional modification of FTases and the oligosaccharide products. Besides the catalytic activity, InuCA is anchored on the cell surface dependent on the environmental pH and may be also involved in the adhesion of L. crispatus to the vaginal epithelial cells. Since L. crispatus plays an essential role in the normal vaginal micro-ecosystem, the described work will be helpful to elucidate the functional genes and colonization mechanism of the dominant species.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3