Murine Macrophage Transcriptional Responses to Bacillus anthracis Infection and Intoxication

Author:

Bergman Nicholas H.12,Passalacqua Karla D.2,Gaspard Renee3,Shetron-Rama Lynne M.2,Quackenbush John3,Hanna Philip C.2

Affiliation:

1. Bioinformatics Program

2. Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan

3. Institute for Genomic Research, Rockville, Maryland

Abstract

ABSTRACT Interactions between Bacillus anthracis and host macrophages represent critical early events in anthrax pathogenesis, but their details are not clearly understood. Here we report the first genomewide characterization of the transcriptional changes within macrophages infected with B. anthracis and the identification of several hundred host genes that were differentially expressed during this intracellular stage of infection. These loci included both genes that are known to be regulated differentially in response to many other bacterial pathogens and those that appear to be differentially regulated in response to B. anthracis but not other bacterial species that have been tested. These data provide a transcriptional basis for a variety of physiological changes observed during infection, including the induction of apoptosis caused by the infecting bacteria. The expression patterns underlying B. anthracis -induced apoptosis led us to test further the importance of one very highly induced macrophage gene, that for ornithine decarboxylase. Our data show that this enzyme plays an important and previously unrecognized role in suppressing apoptosis in B. anthracis -infected cells. We have also characterized the transcriptional response to anthrax lethal toxin in activated macrophages and found that, following toxin treatment, many of the host inflammatory response pathways are dampened. These data provide insights into B. anthracis pathogenesis as well as potential leads for the development of new diagnostic and therapeutic options.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3