Abstract
Sucrose density gradient centrifugation of cell envelopes of chemotrophically grown cells of Rhodopseudomonas capsulata St. Louis (= ATCC 23782) resulted in the separation of a cytoplasmic membrane from a cell wall fraction (buoyant densities, 1.139 and 1.215 g/cm3, respectively). The cell wall fractions (untreated or Triton extracted) contained peptidoglycan- and lipopolysaccharide-specific components. Their neutral sugar content, mainly rhamnose and galactose, was high (250 and 100 micrograms/mg [dry weight] of material) due to a non-lipopolysaccharide polymer. The fatty acid content was low (less than or equal to 60 micrograms/mg [dry weight] of material), and half of it was contributed by lipopolysaccharide (3-OH-C10:0, C12:1, and 3-oxo-C14:0). The predominant other fatty acid was C18:1. An outer membrane fraction, obtained by lysozyme treatment of the Triton-extracted cell wall, showed essentially the same chemical composition except for almost complete removal of peptidoglycan. Saline extraction (0.9% NaCl, 37 degrees C, 2 h) removed a lipopolysaccharide-protein(-phospholipid?) complex from whole cells of R. capsulata St. Louis. The polypeptide patterns of the cell wall and outer membrane as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis comprised 20 to 25 different polypeptides (most of them very faint) and were dominated by a single, heat-modifiable major protein (Mr 69,000 after solubilization below 60 degrees C; Mr 33,000 at temperatures above 70 degrees C).
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献