Nuclear gene for mitochondrial leucyl-tRNA synthetase of Neurospora crassa: isolation, sequence, chromosomal mapping, and evidence that the leu-5 locus specifies structural information.
-
Published:1989-11
Issue:11
Volume:9
Page:4631-4644
-
ISSN:0270-7306
-
Container-title:Molecular and Cellular Biology
-
language:en
-
Short-container-title:Mol. Cell. Biol.
Author:
Chow C M,Metzenberg R L,Rajbhandary U L
Abstract
We have isolated and characterized the nuclear gene for the mitochondrial leucyl-tRNA synthetase (LeuRS) of Neurospora crassa and have established that a defect in this structural gene is responsible for the leu-5 phenotype. We have purified mitochondrial LeuRS protein, determined its N-terminal sequence, and used this sequence information to identify and isolate a full-length genomic DNA clone. The 3.7-kilobase-pair region representing the structural gene and flanking regions has been sequenced. The 5' ends of the mRNA were mapped by S1 nuclease protection, and the 3' ends were determined from the sequence of cDNA clones. The gene contains a single short intron, 60 base pairs long. The methionine-initiated open reading frame specifies a 52-amino-acid mitochondrial targeting sequence followed by a 942-amino-acid protein. Restriction fragment length polymorphism analyses mapped the mitochondrial LeuRS structural gene to linkage group V, exactly where the leu-5 mutation had been mapped before. We show that the leu-5 strain has a defect in the structural gene for mitochondrial LeuRS by restoring growth under restrictive conditions for this strain after transformation with a wild-type copy of the mitochondrial LeuRS gene. We have cloned the mutant allele present in the leu-5 strain and identified the defect as being due to a Thr-to-Pro change in mitochondrial LeuRS. Finally, we have used immunoblotting to show that despite the apparent lack of mitochondrial LeuRS activity in leu-5 extracts, the leu-5 strain contains levels of mitochondrial LeuRS protein to similar to those of the wild-type strain.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献