A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes

Author:

Gossett L A1,Kelvin D J1,Sternberg E A1,Olson E N1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston 77030.

Abstract

Exposure of skeletal myoblasts to growth factor-deficient medium results in transcriptional activation of muscle-specific genes, including the muscle creatine kinase gene (mck). Tissue specificity, developmental regulation, and high-level expression of mck are conferred primarily by a muscle-specific enhancer located between base pairs (bp) -1350 and -1048 relative to the transcription initiation site (E. A. Sternberg, G. Spizz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson, Mol. Cell. Biol. 8:2896-2909, 1988). To begin to define the regulatory mechanisms that mediate the selective activation of the mck enhancer in differentiating muscle cells, we have further delimited the boundaries of this enhancer and analyzed its interactions with nuclear factors from a variety of myogenic and nonmyogenic cell types. Deletion mutagenesis showed that the region between 1,204 and 1,095 bp upstream of mck functions as a weak muscle-specific enhancer that is dependent on an adjacent enhancer element for strong activity. This adjacent activating element does not exhibit enhancer activity in single copy but acts as a strong enhancer when multimerized. Gel retardation assays combined with DNase I footprinting and diethyl pyrocarbonate interference showed that a nuclear factor from differentiated C2 myotubes and BC3H1 myocytes recognized a conserved A + T-rich sequence within the peripheral activating region. This myocyte-specific enhancer-binding factor, designated MEF-2, was undetectable in nuclear extracts from C2 or BC3H1 myoblasts or several nonmyogenic cell lines. MEF-2 was first detectable within 2 h after exposure of myoblasts to mitogen-deficient medium and increased in abundance for 24 to 48 h thereafter. The appearance of MEF-2 required ongoing protein synthesis and was prevented by fibroblast growth factor and type beta transforming growth factor, which block the induction of muscle-specific genes. A myoblast-specific factor that is down regulated within 4 h after removal of growth factors was also found to bind to the MEF-2 recognition site. A 10-bp sequence, which was shown by DNase I footprinting and diethyl pyrocarbonate interference to interact directly with MEF-2, was identified within the rat and human mck enhancers, the rat myosin light-chain (mlc)-1/3 enhancer, and the chicken cardiac mlc-2A promoter. Oligomers corresponding to the region of the mlc-1/3 enhancer, which encompasses this conserved sequence, bound MEF-2 and competed for its binding to the mck enhancer. These results thus provide evidence for a novel myocyte-specific enhancer-binding factor, MEF-2, that is expressed early in the differentiation program and is suppressed by specific polypeptide growth factors. The ability of MEF-2 to recognize conserved activating elements associated with multiple-specific genes suggests that this factor may participate in the coordinate regulation of genes during myogenesis.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference42 articles.

1. The promoter of the chicken cardiac myosin light chain 2 gene shows cell-specific expression in transfected primary cultures of chicken muscle;Arnold H. H.;Nucleic Acids Res.,1988

2. Isolation and characterization of the mouse acetylcholine receptor B-subunit gene: identification of a 148-bp cis-acting region that confers myotubespecific expression;Baldwin T. J.;J. Cell Biol.,1988

3. Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal a-actin gene;Bergsma D. J.;Mol. Cell. Biol.,1986

4. Approximately 1 kilobase of sequence 5' to the two myosin light-chain 1t'3f gene cap sites is sufficient for differentiation-dependent expression;Billeter R.;Mol. Cell. Biol.,1988

5. Multiple positive and negative 5' regulatory elements control the cell-type-specific expression of the embryonic skeletal myosin heavy-chain gene;Bouvagnet P. F.;Mol. Cell. Biol.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3