Affiliation:
1. Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark 07103.
Abstract
The enzymes of the proline utilization pathway (the products of the PUT1 and PUT2 genes) in Saccharomyces cerevisiae are coordinately regulated by proline and the PUT3 transcriptional activator. To learn more about the control of this pathway, constitutive mutations in PUT3 as well as in other regulators were sought. A scheme using a gene fusion between PUT1 (S. cerevisiae proline oxidase) and galK (Escherichia coli galactokinase) was developed to select directly for constitutive mutations affecting the PUT1 promoter. These mutations were secondarily screened for their effects in trans on the promoter of the PUT2 (delta 1-pyrroline-5-carboxylate dehydrogenase) gene by using a PUT2-lacZ (E. coli beta-galactosidase) gene fusion. Three different classes of mutations were isolated. The major class consisted of semidominant constitutive PUT3 mutations that caused PUT2-lacZ expression to vary from 2 to 22 times the uninduced level. A single dominant mutation in a new locus called PUT5 resulted in low-level constitutive expression of PUT2-lacZ; this mutation was epistatic to the recessive, noninducible put3-75 allele. Recessive constitutive mutations were isolated that had pleiotropic growth defects; it is possible that these mutations are not specific to the proline utilization pathway but may be in genes that control several pathways. Since the PUT3 gene appears to have a major role in the regulation of this pathway, a molecular analysis was undertaken. This gene was cloned by functional complementation of the put3-75 mutation. Strains carrying a complete deletion of this gene are viable, proline nonutilizing, and indistinguishable in phenotype from the original put3-75 allele. The PUT3 gene encodes a 2.8-kilobase-pair transcript that is not regulated by proline at the level of RNA accumulation. The presence of the gene on a high-copy-number plasmid did not alter the regulation of one of its target genes, PUT2-lacZ, suggesting that the PUT3 gene product is not limiting and that a titratable repressor is not involved in the regulation of this pathway.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献