Affiliation:
1. Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
2. Braunschweig Integrated Center of Systems Biology, Braunschweig, Germany
Abstract
The use of biomass as a renewable source and replacement for crude oil for the provision of chemicals and fuels is of major importance for current and future societies. Lignin, the most abundant aromatic polymer in nature, holds promise as a renewable starting material for the generation of required aromatic structures. However, a controlled and selective lignin depolymerization to yield desired aromatic structures is a very challenging task. In this regard, bacterial β-etherases are especially interesting, as they are able to cleave the most abundant bond type in lignin with high selectivity. With this study, we significantly expanded the toolbox of available β-etherases for application in lignin depolymerization and discovered more active as well as diverse enzymes than previously known. Moreover, the identification of further β-etherases by sequence database mining in the future will be facilitated considerably through our deduced etherase-specific sequence motifs.
Funder
Deutsche Forschungsgemeinschaft
Niedersächsisches Ministerium für Wissenschaft und Kultur
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献