Real-Time PCR-Based Pathotyping of Newcastle Disease Virus by Use of TaqMan Minor Groove Binder Probes

Author:

Farkas T.12,Székely É.1,Belák S.3,Kiss I.13

Affiliation:

1. Department of Microbiology, Central Agricultural Office, Veterinary Diagnostic Directorate, Bornemissza u. 3-7, H-4031 Debrecen, Hungary

2. R&D Virology, CEVA-Phylaxia Biologicals Co. Ltd., Szállás u. 5, H-1107 Budapest, Hungary

3. Joint Research and Development Division, Departments of Parasitology and Virology, The National Veterinary Institute and the Swedish University of Agricultural Sciences, Ulls Väg 2B, SE-751 89 Uppsala, Sweden

Abstract

ABSTRACT A real-time reverse-transcription PCR was developed to detect and pathotype Newcastle disease viruses (NDV) in clinical samples. Degenerate oligonucleotide primers and TaqMan probes with nonfluorescent minor groove binder (MGB) quencher amplified and hybridized to a region in the fusion protein (F) gene that corresponds to the cleavage site of the F0 precursor, which is a key determinant of NDV pathogenicity. The application of degenerate primers and TaqMan MGB probes provided high specificity to the assay, as was shown by the successful and rapid pathotype determination of 39 NDV strains representing all the known genotypes (I to VIII) and pathotypes (lentogens/mesogens/velogens). The PCR assays specific for lentogenic and velogenic/mesogenic strains had high analytical sensitivity, detecting approximately 10 and 20 copies of the target molecule per reaction, respectively. The detection limit was also determined in terms of 50% egg infective dose (EID 50 ) by using dilution series of virus stock solutions to be approximately 10 1.0 and 10 −1.3 EID 50 /ml for lentogens and velogens/mesogens, respectively. Organ, swab, and stool specimens from experimentally infected animals were tested to prove the clinical suitability of the method. The results of this study suggest that the described real-time PCR assay has the potential to be used for the rapid detection/pathotyping of NDV isolates and qualitative/quantitative measurement of the virus load.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3