Author:
Beabout Kathryn,Hammerstrom Troy G.,Perez Anisha Maria,Magalhães Bárbara Freitas,Prater Amy G.,Clements Thomas P.,Arias Cesar A.,Saxer Gerda,Shamoo Yousif
Abstract
ABSTRACTTigecycline is a translational inhibitor with efficacy against a wide range of pathogens. Using experimental evolution, we adaptedAcinetobacter baumannii,Enterococcus faecium,Escherichia coli, andStaphylococcus aureusto growth in elevated tigecycline concentrations. At the end of adaptation, 35 out of 47 replicate populations had clones with a mutation inrpsJ, the gene that encodes the ribosomal S10 protein. To validate the role of mutations inrpsJin conferring tigecycline resistance, we showed that mutation ofrpsJalone inEnterococcus faecaliswas sufficient to increase the tigecycline MIC to the clinical breakpoint of 0.5 μg/ml. Importantly, we also report the first identification ofrpsJmutations associated with decreased tigecycline susceptibility inA. baumannii,E. coli, andS. aureus. The identified S10 mutations across both Gram-positive and -negative species cluster in the vertex of an extended loop that is located near the tigecycline-binding pocket within the 16S rRNA. These data indicate that S10 is a general target of tigecycline adaptation and a relevant marker for detecting reduced susceptibility in both Gram-positive and -negative pathogens.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献