Author:
Roberts Jason A.,Taccone Fabio Silvio,Udy Andrew A.,Vincent Jean-Louis,Jacobs Frédérique,Lipman Jeffrey
Abstract
ABSTRACTDespite the development of novel antibiotics active against Gram-positive bacteria, vancomycin generally remains the first treatment, although rapidly achieving concentrations associated with maximal efficacy provides an unresolved challenge. The objective of this study was to conduct a population pharmacokinetic analysis of vancomycin in a large population of critically ill patients. This was a retrospective data collection of 206 adult septic critically ill patients who were administered vancomycin as a loading dose followed by continuous infusion. The concentration-versus-time data for vancomycin in serum was analyzed by a nonlinear mixed-effects modeling approach using NONMEM. Monte Carlo simulations were performed using the final covariate model. We found that the best population pharmacokinetic model consisted of a one-compartment linear model with combined proportional and additive residual unknown variability. The volume of distribution of vancomycin (1.5 liters/kg) was described by total body weight and clearance (4.6 liters/h) by 24-hour urinary creatinine clearance (CrCl), normalized to body surface area. Simulation data showed that a 35-mg/kg loading dose was necessary to rapidly achieve vancomycin concentrations of 20 mg/liter. Daily vancomycin requirements were dependent on CrCl, such that a patient with a CrCl of 100 ml/min/1.73 m2would require at least 35 mg/kg per day by continuous infusion to maintain target concentrations. In conclusion, we have found that higher-than-recommended loading and daily doses of vancomycin seem to be necessary to rapidly achieve therapeutic serum concentrations in these patients.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
191 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献