Affiliation:
1. Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire
Abstract
ABSTRACT
The toxin-coregulated pilus (TCP) of
Vibrio cholerae
and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a
tcpQ
mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of
tcp
mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a
tcpC
deletion strain). Complementation of the
tcpQ
deletion restored TcpC levels and TCP formation, and similarly, complementation of
tcpC
restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65°C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference42 articles.
1. Basic local alignment search tool
2. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1987. Current protocols in molecular biology. Greene Publishing Associates and John Wiley & Sons New York N.Y.
3. Bitter, W. 2003. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol.179:307-314.
4. Bitter, W., M. Koster, M. Latijnhouwers, H. de Cock, and J. Tommassen. 1998. Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol. Microbiol.27:209-219.
5. Brok, R., P. Van Gelder, M. Winterhalter, U. Ziese, A. J. Koster, H. de Cock, M. Koster, J. Tommassen, and W. Bitter. 1999. The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J. Mol. Biol.294:1169-1179.
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献