Diverse Phage-Encoded Toxins in a Protective Insect Endosymbiont

Author:

Degnan Patrick H.1,Moran Nancy A.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721

Abstract

ABSTRACT The lysogenic bacteriophage APSE infects “ Candidatus Hamiltonella defensa,” a facultative endosymbiont of aphids and other sap-feeding insects. This endosymbiont has established a beneficial association with aphids, increasing survivorship following attack by parasitoid wasps. Although APSE and “ Ca . Hamiltonella defensa” are effectively maternally transmitted between aphid generations, they can also be horizontally transferred among insect hosts, which results in genetically distinct “ Ca . Hamiltonella defensa” strains infecting the same aphid species and sporadic distributions of both APSE and “ Ca . Hamiltonella defensa” among hosts. Aphids infected only with “ Ca . Hamiltonella defensa” have significantly less protection than those infected with both “ Ca . Hamiltonella defensa” and APSE. This protection has been proposed to be connected to eukaryote-targeted toxins previously discovered in the genomes of two characterized APSE strains. In this study, we have sequenced partial genomes from seven additional APSE strains to address the evolution and extent of toxin variation in this phage. The APSE lysis region has been a hot spot for nonhomologous recombination of novel virulence cassettes. We identified four new toxins from three protein families, Shiga-like toxin, cytolethal distending toxin, and YD-repeat toxins. These recombination events have also resulted in reassortment of the downstream lysozyme and holin genes. Analysis of the conserved APSE genes flanking the variable toxin cassettes reveals a close phylogenetic association with phage sequences from two other facultative endosymbionts of insects. Thus, phage may act as a conduit for ongoing gene exchange among heritable endosymbionts.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3