Tracking Nosocomial Klebsiella pneumoniae Infections and Outbreaks by Whole-Genome Analysis: Small-Scale Italian Scenario within a Single Hospital

Author:

Onori Raffaella,Gaiarsa Stefano,Comandatore Francesco,Pongolini StefanoORCID,Brisse Sylvain,Colombo Alberto,Cassani Gianluca,Marone Piero,Grossi Paolo,Minoja Giulio,Bandi Claudio,Sassera Davide,Toniolo Antonio

Abstract

Multidrug-resistant (MDR)Klebsiella pneumoniaeis one of the most important causes of nosocomial infections worldwide. After the spread of strains resistant to beta-lactams at the end of the previous century, the diffusion of isolates resistant to carbapenems and colistin is now reducing treatment options and the containment of infections. Carbapenem-resistantK. pneumoniaestrains have spread rapidly among Italian hospitals, with four subclades of pandemic clonal group 258 (CG258). Here we show that a single Italian hospital has been invaded by three of these subclades within 27 months, thus replicating on a small scale the “Italian scenario.” We identified a single clone responsible for an epidemic outbreak involving seven patients, and we reconstructed its star-like pattern of diffusion within the intensive care unit. This epidemiological picture was obtained through phylogenomic analysis of 16 carbapenem-resistantK. pneumoniaeisolates collected in the hospital during a 27-month period, which were added to a database of 319 genomes representing the available global diversity ofK. pneumoniaestrains. Phenotypic and molecular assays did not reveal virulence or resistance determinants specific for the outbreak isolates. Other factors, rather than selective advantages, might have caused the outbreak. Finally, analyses allowed us to identify a major subclade of CG258 composed of strains bearing the yersiniabactin virulence factor. Our work demonstrates how the use of combined phenotypic, molecular, and whole-genome sequencing techniques can help to identify quickly and to characterize accurately the spread of MDR pathogens.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3