Resistance to the Antimicrobial Agent Fosmidomycin and an FR900098 Prodrug through Mutations in the Deoxyxylulose Phosphate Reductoisomerase Gene (dxr)

Author:

Armstrong Christopher M.,Meyers David J.,Imlay Leah S.ORCID,Freel Meyers Caren,Odom Audrey R.

Abstract

ABSTRACTThere is a pressing need for new antimicrobial therapies to combat globally important drug-resistant human pathogens, includingPlasmodium falciparummalarial parasites,Mycobacterium tuberculosis, and Gram-negative bacteria, includingEscherichia coli. These organisms all possess the essential methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, which is not found in humans. The first dedicated enzyme of the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (Dxr), is inhibited by the phosphonic acid antibiotic fosmidomycin and its analogs, including theN-acetyl analog FR900098 and the phosphoryl analog fosfoxacin. In order to identify mutations indxrthat confer resistance to these drugs, a library ofE. colidxrmutants was screened at lethal fosmidomycin doses. The most resistant allele (with the S222T mutation) alters the fosmidomycin-binding site of Dxr. The expression of this resistant allele increases bacterial resistance to fosmidomycin and other fosmidomycin analogs by 10-fold. These observations confirm that the primary cellular target of fosmidomycin is Dxr. Furthermore, cell lines expressing Dxr-S222T will be a powerful tool to confirm the mechanisms of action of future fosmidomycin analogs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference51 articles.

1. The function of terpene natural products in the natural world;Nat Chem Biol,2007

2. Methylerythritol phosphate pathway of isoprenoid biosynthesis;Annu Rev Biochem,2013

3. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes;Proc Natl Acad Sci U S A,2000

4. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate;Biochem J,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3