Affiliation:
1. Department of Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada.
Abstract
Starvation of cells of the yeast Saccharomyces cerevisiae causes cessation of proliferation and acquisition of characteristic physiological properties. The stationary-phase state that results represents a unique developmental state, as shown by a novel conditional phenotype (M. A. Drebot, G. C. Johnston, and R. A. Singer, Proc. Natl. Acad. Sci. USA 84:7948-7952, 1987): mutant cells cannot proliferate at the restrictive temperature when stimulated to reenter the mitotic cell cycle from stationary phase but are unaffected and continue proliferation indefinitely if transferred to the restrictive temperature during exponential growth. We have exploited this reentry mutant phenotype to demonstrate that the same stationary-phase state is generated by nitrogen, sulfur, or carbon starvation and by the cdc25-1 mutation, which conditionally impairs the cyclic AMP-mediated signal transduction pathway. We also show that heat shock, a treatment that elicits physiological perturbations associated with stationary phase, does not cause cells to enter stationary phase. The physiological properties associated with stationary phase therefore do not result from residence in stationary phase but from the stress conditions that bring about stationary phase.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献