The cellular transcription factor E2f requires viral E1A and E4 gene products for increased DNA-binding activity and functions to stimulate adenovirus E2A gene expression

Author:

Babiss L E1

Affiliation:

1. Rockefeller University, New York, New York 10021-6399.

Abstract

Whereas a wide variety of cellular proteins interact with the cis-regulatory elements of the adenovirus E1A and E2A genes, only the DNA-binding activity of the cellular E2f factor is modulated by viral early-gene expression. An analysis of cellular E2f protein levels and adenovirus early-gene expression in a panel of independently cloned virus-transformed rodent cell lines and in virus-infected rodent cells has established that both the E1A 289-amino-acid (289R) protein and a yet-to-be-defined E4 gene product are required for maximal E2f DNA-binding activity. To distinguish between the multiple roles the E1A protein could serve in this process, the E2f DNA-binding activity was determined in a virus-transformed cell line which contains a conditional-lethal mutation affecting the 289R protein. Since E4 gene expression was not altered by the incubation conditions, the observation of reduced cellular E2f activity at the nonpermissive temperature suggests a direct role for the E1A 289R protein in E2f activation. When a virus containing a deletion in the E4 gene was introduced into cell lines which can complement the E4 gene defect, a correlation between high cellular E2f levels and increased rates of E2A gene transcription was observed. A time course analysis of the viral infection revealed that E2f functions catalytically to stimulate viral E2A gene transcription. These observations have led to several hypotheses concerning possible mechanisms by which elevated E2A gene expression, which leads to cytotoxicity, might be avoided in the transformed cell.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3