Catalytic Efficiency Diversification of Duplicate β-1,3-1,4-Glucanases from Neocallimastix patriciarum J11

Author:

Hung Yu-Lung,Chen Hui-Jye,Liu Jeng-Chen,Chen Yo-Chia

Abstract

ABSTRACTFour types of β-1,3-1,4 glucanase (β-glucanase, EC 3.2.1.73) genes, designatedbglA13,bglA16,bglA51, andbglM2, were found in the cDNA library ofNeocallimastix patriciarumJ11. All were highly homologous with each other and demonstrated a close phylogenetic relationship with and a similar codon bias toStreptococcus equinus. The presence of expansion and several predicted secondary structures in the 3′ untranslated regions (3′UTRs) ofbglA16andbglM2suggest that these two genes were duplicated recently, whereasbglA13andbglA16, which contain very short 3′UTRs, were replicated earlier. These findings indicate that the β-glucanase genes fromN. patriciarumJ11 may have arisen by horizontal transfer from the bacterium and subsequent duplication in the rumen fungus. β-Glucanase genes ofStreptococcus equinus,Ruminococcus albus7, andN. patriciarumJ11 were cloned and expressed byEscherichia coli. The recombinant β-glucanases cloned fromS. equinus,R. albus7, andN. patriciarumJ11 were endo-acting and had similar substrate specificity, but they demonstrated different properties in other tests. The specific activities and catalytic efficiency of the bacterial β-glucanases were also significantly lower than those of the fungal β-glucanases. Our results also revealed that the activities and some characteristics of enzymes were changed during the horizontal gene transfer event. The specific activities of the fungal β-glucanases ranged from 26,529 to 41,209 U/mg of protein when barley-derived β-glucan was used as the substrate. They also demonstrated similar pH and temperature optima, substrate specificity, substrate affinity, and hydrolysis patterns. Nevertheless, BglA16 and BglM2, two recently duplicated β-glucanases, showed much higherkcatvalues than others. These results support the notion that duplicated β-glucanase genes, namely,bglA16andbglM2, increase the reaction efficiency of β-glucanases and suggest that the catalytic efficiency of β-glucanase is likely to be a criterion determining the evolutionary fate of duplicate forms inN. patriciarumJ11.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3