Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase

Author:

Ampe F1,Lindley N D1

Affiliation:

1. Centre de Bioingénierie Gilbert Durand, Institut National des Sciences Appliquées, Centre National de la Recherche Scientifique Unité de Recherche Associée 544, Toulouse, France.

Abstract

During batch growth of Alcaligenes eutrophus on benzoate-acetate mixtures, benzoate was the preferred substrate, with acetate consumption being delayed until the rate of benzoate consumption had diminished. This effect was attributed to a transcriptional control of the synthesis of acetyl coenzyme A (acetyl-CoA) synthetase, an enzyme necessary for the entry of acetate into the central metabolic pathways, rather than to a biochemical modulation of the activity of this enzyme. Analysis of a 2.4-kb mRNA transcript hybridizing with the A. eutrophus acoE gene confirmed this repression effect. In a benzoate-limited chemostat culture, derepression was observed, with no increase in the level of expression following an acetate pulse. Benzoate itself was not the signal triggering the repression of acetyl-CoA synthetase. This role was played by catechol, which transiently accumulated in the medium when high specific rates of benzoate consumption were reached. The lack of rapid inactivation of the functional acetyl-CoA synthetase after synthesis has been stopped enables A. eutrophus to retain the capacity to metabolize acetate for prolonged periods while conserving minimal protein expenditure.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference45 articles.

1. Ampe F. and N. D. Lindley. Unpublished data.

2. The auxiliary substrate concept. An approach for overcoming limits of microbial performances;Babel W.;Acta Biotechnol.,1993

3. Evidence for novel mechanisms of polychlorinated biphenyl metabolism by Alcaligenes eutrophus H850;Bedard D. L.;Appl. Environ. Microbiol.,1987

4. Cyclic AMP in procaryotes;Botsford J. L.;Microbiol. Rev.,1992

5. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu;Bowien B.;Rev. Microbiol.,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3