Polyamine-Mediated Resistance of Uropathogenic Escherichia coli to Nitrosative Stress

Author:

Bower Jean M.1,Mulvey Matthew A.1

Affiliation:

1. Pathology Department, Division of Cell Biology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah 84132-2501

Abstract

ABSTRACT During the course of a urinary tract infection, substantial levels of nitric oxide and reactive nitrogen intermediates are generated. We have found that many uropathogenic strains of Escherichia coli display far greater resistance to nitrosative stress than the K-12 reference strain MG1655. By selecting and screening for uropathogenic E. coli transposon mutants that are unable to grow in the presence of acidified nitrite, the cadC gene product was identified as a key facilitator of nitrosative stress resistance. Mutation of cadC , or its transcriptional targets cadA and cadB , results in loss of significant production of the polyamine cadaverine and increased sensitivity to acidified nitrite. Exogenous addition of cadaverine or other polyamines rescues growth of cad mutants under nitrosative stress. In wild-type cells, the concentration of cadaverine produced per cell is substantially increased by exposure to acidified nitrite. The mechanism behind polyamine-mediated rescue from nitrosative stress is unclear, but it is not attributable solely to chemical quenching of reactive nitrogen species or reduction in mutation frequency.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3