Overexpression of Genes of the Cell Wall Stimulon in Clinical Isolates of Staphylococcus aureus Exhibiting Vancomycin-Intermediate- S. aureus -Type Resistance to Vancomycin

Author:

McAleese Fionnuala1,Wu Shang Wei2,Sieradzki Krzysztof2,Dunman Paul1,Murphy Ellen3,Projan Steven4,Tomasz Alexander2

Affiliation:

1. Wyeth Research, Pearl River, New York

2. Laboratory of Microbiology, The Rockefeller University, New York, New York

3. Wyeth Vaccines, Pearl River, New York

4. Wyeth Research, Cambridge, Massachusetts

Abstract

ABSTRACT Custom-designed gene chips (Affymetrix) were used to determine genetic relatedness and gene expression profiles in Staphylococcus aureus isolates with increasing MICs of vancomycin that were recovered over a period of several weeks from the blood and heart valve of a patient undergoing extensive vancomycin therapy. The isolates were found to be isogenic as determined by the GeneChip based genotyping approach and thus represented a unique opportunity to study changes in gene expression that may contribute to the vancomycin resistance phenotype. No differences in gene expression were detected between the parent strain, JH1, and JH15, isolated from the nares of a patient contact. Few expression changes were observed between blood and heart valve isolates with identical vancomycin MICs. A large number of genes had altered expression in the late stage JH9 isolate (MIC = 8 μg/ml) compared to JH1 (MIC = 1 μg/ml). Most genes with altered expression were involved in housekeeping functions or cell wall biosynthesis and regulation. The sortase-encoding genes, srtA and srtB , as well as several surface protein-encoding genes were downregulated in JH9. Two hypothetical protein-encoding genes, SAS016 and SA2343, were dramatically overexpressed in JH9. Interestingly, 27 of the genes with altered expression in JH9 grown in drug-free medium were found to be also overexpressed when the parental strain JH1 was briefly exposed to inhibitory concentrations of vancomycin, and more than half (17 of 27) of the genes with altered expression belonged to determinants that were proposed to form part of a general cell wall stress stimulon (S. Utaida et al., Microbiology 149:2719-2732, 2003).

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3