The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens

Author:

Ba-Thein W1,Lyristis M1,Ohtani K1,Nisbet I T1,Hayashi H1,Rood J I1,Shimizu T1

Affiliation:

1. Department of Microbiology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan.

Abstract

Extracellular toxin production in Clostridium perfringens is positively regulated by the two-component regulatory genes virR and virS. Northern (RNA) blots carried out with RNA preparations from the wild-type strain 13 and the isogenic virR and virS mutants TS133 and JIR4000 showed that the virR and virS genes composed an operon and were transcribed as a single 2.1-kb mRNA molecule. Primer extension analysis led to the identification of two promoters upstream of virR. Hybridization analysis of the mutants and their complemented derivatives showed that the virR/virS system positively regulated the production of alpha-toxin (or phospholipase C, theta-toxin (perfringolysin O), and kappa-toxin (collagenase) at the transcriptional level. However, the modes of regulation of these genes were shown to differ. The theta-toxin structural gene, pfoA, had both a major and a very minor promoter, with the major promoter being virR/virS dependent. The colA gene, which encodes the kappa-toxin, had two major promoters, only one of which was virR/virS-dependent. In contrast, the alpha-toxin structural gene, p1c, had only one promoter, which was shown to be partially regulated by the virR and virS genes. Comparative analysis of the virR/virS-dependent promoters did not reveal any common sequence motifs that could represent VirR-binding sites. It was concluded that either the virR/virS system modulates its effects via secondary regulatory genes that are specific for each toxin structural gene or the VirR protein does not have a single consensus binding sequence.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3