Human purine nucleoside phosphorylase and adenosine deaminase: gene transfer into cultured cells and murine hematopoietic stem cells by using recombinant amphotropic retroviruses

Author:

McIvor R S,Johnson M J,Miller A D,Pitts S,Williams S R,Valerio D,Martin D W,Verma I M

Abstract

Cell lines were established which produced high titers (approximately 10(6) infectious units per ml) of amphotropic, replication-defective recombinant retroviruses which transduced sequences encoding either human purine nucleoside phosphorylase (PNP) or adenosine deaminase (ADA). These viruses also contained a human hypoxanthine phosphoribosyltransferase gene as a selectable marker and a mouse metallothionein promoter (MMP) sequence just upstream from the PNP or ADA genes. Virus structure was maintained through the replication cycle if a short (216-base pair) MMP sequence was used. However, the use of a longer (1,834-base pair) MMP sequence resulted in the deletion of a significant portion of the recombinant virus genome, including the transcriptional regulatory elements of the MMP sequence. Northern analysis indicated a predominance of genome length transcripts in cells infected with deleted virus. The demonstration of substantial human PNP or ADA activity in virus-infected mouse fibroblasts by isozyme analysis suggested that active gene product was translated from either spliced or bicistronic message. The deleted ADA and PNP viruses were introduced into mouse hematopoietic stem cells by cocultivating freshly explanted bone marrow with virus producer cells. The infected marrow cells were injected into irradiated, syngeneic recipient mice, and the presence of integrated ADA or PNP proviral sequences was demonstrated in the DNA of spleen colonies by Southern analysis. Failure of these integrated proviral sequences to express active, human isozyme in spleen colony tissue indicated the existence of some regulatory constraint not active in cultured mouse cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3