Novel Partial Reductive Pathway for 4-Chloronitrobenzene and Nitrobenzene Degradation in Comamonas sp. Strain CNB-1

Author:

Wu Jian-feng1,Jiang Cheng-ying1,Wang Bao-jun1,Ma Ying-fei1,Liu Zhi-pei1,Liu Shuang-jiang1

Affiliation:

1. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China

Abstract

ABSTRACT Comamonas sp. strain CNB-1 grows on 4-chloronitrobenzene (4-CNB) and nitrobenzene as sole carbon and nitrogen sources. In this study, two genetic segments, cnbB-orf2-cnbA and cnbR-orf1-cnbCaCbDEFGHI , located on a newly isolated plasmid, pCNB1 (ca. 89 kb), and involved in 4-CNB/nitrobenzene degradation, were characterized. Seven genes ( cnbA , cnbB , cnbCa , cnbCb , cnbD , cnbG , and cnbH ) were cloned and functionally expressed in recombinant Escherichia coli , and they were identified as encoding 4-CNB nitroreductase (CnbA), 1-hydroxylaminobenzene mutase (CnbB), 2-aminophenol 1,6-dioxygenase (CnbCab), 2-amino-5-chloromuconic semialdehyde dehydrogenase (CnbD), 2-hydroxy-5-chloromuconic acid (2H5CM) tautomerase, and 2-amino-5-chloromuconic acid (2A5CM) deaminase (CnbH). In particular, the 2A5CM deaminase showed significant identities (31 to 38%) to subunit A of Asp-tRNA Asn /Glu-tRNA Gln amidotransferase and not to the previously identified deaminases for nitroaromatic compound degradation. Genetic cloning and expression of cnbH in Escherichia coli revealed that CnbH catalyzed the conversion of 2A5CM into 2H5CM and ammonium. Four other genes ( cnbR , cnbE , cnbF , and cnbI ) were tentatively identified according to their high sequence identities to other functionally identified genes. It was proposed that CnbH might represent a novel type of deaminase and be involved in a novel partial reductive pathway for chloronitrobenzene or nitrobenzene degradation.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3