Affiliation:
1. Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, United Kingdom
Abstract
ABSTRACT
The successive generation times for single cells of
Escherichia coli
K-12 were measured as described by A. Elfwing, Y. LeMarc, J. Baranyi, and A. Ballagi (Appl. Environ. Microbiol. 70:675-678, 2004), and the histograms they generated were used as empirical distributions to simulate growth of the population as the result of the multiplication of its single cells. This way, a stochastic birth model in which the underlying distributions were measured experimentally was simulated. To validate the model, analogous bacterial growth curves were generated by the use of different inoculum levels. The agreement with the simulation was very good, proving that the growth of the population can be predicted accurately if the distribution of the first few division times for the single cells within that population is known. Two questions were investigated by the simulation. (i) To what extent can we say that the distribution of the detection time, i.e., the time by which a single-cell-generated subpopulation reaches a detectable level, can be identified with that of the lag time of the original single cell? (ii) For low inocula, how does the inoculum size affect the lag time of the population?
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献