The tRNA Modification Complex Elongator Regulates the Cdc42-Dependent Mitogen-Activated Protein Kinase Pathway That Controls Filamentous Growth in Yeast

Author:

Abdullah Ummi1,Cullen Paul J.1

Affiliation:

1. Department of Biological Sciences, SUNY—Buffalo, Buffalo, New York 14260-1300

Abstract

ABSTRACT Signal transduction pathways control multiple aspects of cellular behavior, including global changes to the cell cycle, cell polarity, and gene expression, which can result in the formation of a new cell type. In the budding yeast Saccharomyces cerevisiae , the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth induces a dimorphic foraging response under nutrient-limiting conditions. How nutritional cues feed into MAPK activation remains an open question. Here we report a functional connection between the elongator tRNA modification complex ( ELP genes) and activity of the filamentous growth pathway. Elongator was required for filamentous growth pathway signaling, and elp mutants were defective for invasive growth, cell polarization, and MAPK-dependent mat formation. Genetic suppression analysis showed that elongator functions at the level of Msb2p, the signaling mucin that operates at the head of the pathway, which led to the finding that elongator regulates the starvation-dependent expression of the MSB2 gene. The Elp complex was not required for activation of related pathways (pheromone response or high osmolarity glycerol response) that share components with the filamentous growth pathway. Because protein translation provides a rough metric of cellular nutritional status, elongator may convey nutritional information to the filamentous growth pathway at the level of MSB2 expression.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3