Calcineurin is required for Candida glabrata Pdr1 transcriptional activation

Author:

Vu Bao Gia1,Simonicova Lucia1,Moye-Rowley W. Scott1ORCID

Affiliation:

1. Department of Molecular Physiology and Biophysics, Carver College of Medicine University of Iowa, Iowa City, Iowa, USA

Abstract

ABSTRACT Fluconazole is one of the most commonly used antifungals today. A result of this has been the inevitable selection of fluconazole-resistant organisms. This is an especially acute problem in the pathogenic yeast Candida glabrata . Elevated minimal inhibitory concentrations for fluconazole in C. glabrata are frequently associated with substitution mutations within the Zn2Cys6 zinc cluster-containing transcription factor-encoding gene PDR1 . These mutant Pdr1 regulators drive constitutively high expression of target genes like CDR1 that encodes an ATP-binding cassette transporter thought to act as a drug efflux pump. Exposure of C. glabrata to fluconazole induced expression of both Pdr1 and CDR1 , although little is known of the molecular basis underlying the upstream signals that trigger Pdr1 activation. Here, we show that the protein phosphatase calcineurin is required for fluconazole-dependent induction of Pdr1 transcriptional regulation. Calcineurin catalytic activity is required for normal Pdr1 regulation, and a hyperactive form of this phosphatase can decrease susceptibility to the echinocandin caspofungin but does not show a similar change for fluconazole susceptibility. Loss of calcineurin from strains expressing two different gain-of-function forms of Pdr1 also caused a decrease in CDR1 expression and increased fluconazole susceptibility, demonstrating that even these hyperactive Pdr1 regulatory mutants cannot bypass the requirement for calcineurin. Our data implicate calcineurin activity as a link tying azole and echinocandin susceptibility together via the control of transcription factor activity. IMPORTANCE Drug-resistant microorganisms are a problem in the treatment of all infectious diseases; this is an especially acute problem with fungi due to the existence of only three major classes of antifungal drugs, including the azole drug fluconazole. In the pathogenic yeast Candida glabrata , mutant forms of a transcription factor called Pdr1 are commonly associated with decreased fluconazole susceptibility and poor clinical outcomes. Here, we identify a protein phosphatase called calcineurin that is required for fluconazole-dependent induction of Pdr1 transcriptional activation and associated drug susceptibility. Gain-of-function mutant forms of Pdr1 still required the presence of calcineurin to confer normally decreased fluconazole susceptibility. Previous studies showed that calcineurin controls susceptibility to the echinocandin class of antifungal drugs, and our data demonstrate that this protein phosphatase is also required for normal azole drug susceptibility. Calcineurin plays a central role in susceptibility to two of the three major classes of antifungal drugs in C. glabrata .

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3