Identification and Characterization of the scl Gene Encoding a Group A Streptococcus Extracellular Protein Virulence Factor with Similarity to Human Collagen

Author:

Lukomski Slawomir1,Nakashima Kazumitsu1,Abdi Iman1,Cipriano Vincent J.1,Ireland Robin M.2,Reid Sean D.2,Adams Gerald G.1,Musser James M.12

Affiliation:

1. Department of Pathology, Baylor College of Medicine, Houston, Texas 77030,1 and

2. Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 598402

Abstract

ABSTRACT Group A Streptococcus (GAS) expresses cell surface proteins that mediate important biological functions such as resistance to phagocytosis, adherence to plasma and extracellular matrix proteins, and degradation of host proteins. An open reading frame encoding a protein of 348 amino acid residues was identified by analysis of the genome sequence available for a serotype M1 strain. The protein has an LPATGE sequence located near the carboxy terminus that matches the consensus sequence (LPXTGX) present in many gram-positive cell wall-anchored molecules. Importantly, the central region of this protein contains 50 contiguous Gly-X-X triplet amino acid motifs characteristic of the structure of human collagen. The structural gene (designated scl for streptococcal collagen-like) was present in all 50 GAS isolates tested, which together express 21 different M protein types and represent the breadth of genomic diversity in the species. DNA sequence analysis of the gene in these 50 isolates found that the number of contiguous Gly-X-X motifs ranged from 14 in serotype M6 isolates to 62 in a serotype M41 organism. M1 and M18 organisms had the identical allele, which indicates very recent horizontal gene transfer. The gene was transcribed abundantly in the logarithmic but not stationary phase of growth, a result consistent with the occurrence of a DNA sequence with substantial homology with a consensus Mga binding site immediately upstream of the scl open reading frame. Two isogenic mutant M1 strains created by nonpolar mutagenesis of the scl structural gene were not attenuated for mouse virulence as assessed by intraperitoneal inoculation. In contrast, the isogenic mutant derivative made from the M1 strain representative of the subclone most frequently causing human infections was significantly less virulent when inoculated subcutaneously into mice. In addition, both isogenic mutant strains had significantly reduced adherence to human A549 epithelial cells grown in culture. These studies identify a new extracellular GAS virulence factor that is widely distributed in the species and participates in adherence to host cells and soft tissue pathology.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3