Genetic Vaccination against Malaria Infection by Intradermal and Epidermal Injections of a Plasmid Containing the Gene Encoding the Plasmodium berghei Circumsporozoite Protein

Author:

Weiss Richard1,Leitner Wolfgang W.2,Scheiblhofer Sandra1,Chen Defeng2,Bernhaupt Andrea1,Mostböck Sven1,Thalhamer Josef1,Lyon Jeffrey A.2

Affiliation:

1. Immunology Group, Institute of Chemistry and Biochemistry, University of Salzburg, A-5020 Salzburg, Austria,1 and

2. Department of Immunology, Walter Reed Army Institute of Research, Silver Spring, Maryland 209102

Abstract

ABSTRACT The circumsporozoite protein (CSP) from the surface of sporozoite stage Plasmodium sp. malaria parasites is among the most important of the malaria vaccine candidates. Gene gun injection of genetic vaccines encoding Plasmodium berghei CSP induces a significant protective effect against sporozoite challenge; however, intramuscular injection does not. In the present study we compared the immune responses and protective effects induced by P. berghei CSP genetic vaccines delivered intradermally with a needle or epidermally with a gene gun. Mice were immunized three times at 4-week intervals and challenged by a single infectious mosquito bite. Although 50 times more DNA was administered by needle than by gene gun, the latter method induced significantly greater protection against infection. Intradermal injection of the CSP genetic vaccine induced a strong Th1-type immune response characterized by a dominant CSP-specific immunoglobulin G2a (IgG2a) humoral response and high levels of gamma interferon produced by splenic T cells. Gene gun injection induced a predominantly Th2-type immune response characterized by a high IgG1/IgG2a ratio and significant IgE production. Neither method generated measurable cytotoxic T lymphocyte activity. The results indicate that a gene gun-mediated CS-specific Th2-type response may be best for protecting against malarial sporozoite infection when the route of parasite entry is via mosquito bite.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3