Increased Expression of Periplasmic Cu,Zn Superoxide Dismutase Enhances Survival of Escherichia coli Invasive Strains within Nonphagocytic Cells

Author:

Battistoni Andrea1,Pacello Francesca1,Folcarelli Silvia1,Ajello Maria2,Donnarumma Giovanna2,Greco Rita2,Grazia Ammendolia Maria3,Touati Danièle4,Rotilio Giuseppe1,Valenti Piera2

Affiliation:

1. Department of Biology, Università di Roma “Tor Vergata,” 00133 Rome,1

2. Istituto di Microbiologia, II Università di Napoli, 80138 Naples,2Italy, and

3. Istituto Superiore di Sanità, 00161 Rome,3 and

4. Institut Jacques Monod, CNRS, Universités Paris 6 and 7, Paris, France4

Abstract

ABSTRACT We have studied the influence of periplasmic Cu,Zn superoxide dismutase on the intracellular survival of Escherichia coli strains able to invade epithelial cells by the expression of the inv gene from Yersinia pseudotuberculosis but unable to multiply intracellularly. Intracellular viability assays, confirmed by electron microscopy observations, showed that invasive strains of E. coli engineered to increase Cu,Zn superoxide dismutase production are much more resistant to intracellular killing than strains containing only the chromosomal sodC copy. However, we have found only a slight difference in survival within HeLa cells between a sodC -null mutant and its isogenic wild-type strain. Such a small difference in survival correlates with the very low expression of this enzyme in the wild-type strain. We have also observed that acid- and oxidative stress-sensitive E. coli HB101(pRI203) is more rapidly killed in epithelial cells than E. coli GC4468(pRI203). The high mortality of E. coli HB101(pRI203), independent of the acidification of the endosome, is abolished by the overexpression of sodC . Our data suggest that oxyradicals are involved in the mechanisms of bacterial killing within epithelial cells and that high-level production of periplasmic Cu,Zn superoxide dismutase provides bacteria with an effective protection against oxidative damage. We propose that Cu,Zn superoxide dismutase could offer an important selective advantage in survival within host cells to bacteria expressing high levels of this enzyme.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3