Tryptophan synthetase alpha(5.7-S): novel molecular species formed within Escherichia coli

Author:

Berger F G,Herrmann K M

Abstract

A novel molecular species contributes about 5% of the total tryptophan synthetase of Escherichia coli derepressed for the trp operon enzymes. The new species is identified under conditions in which the dissociation of the two nonidentical subunits of the tryptophan synthetase complex is favored. The new species sediments at 5.7S, catalyzes the conversion of indole-3-glycerol phosphate to indole, and has been designated alpha(5.7-S). Although alpha(5.7-S) is not observed in extracts of trpA or trpB mutant strains deficient in the ability to form tryptophan synthetase alpha or beta2 subunits, respectively, a mixture of the two extracts allows the formation of alpha(5.7-S). Similar results are obtained when a homogeneous alpha protein is mixed with an extract of a trpA mutant strain, suggesting that the interaction of alpha and beta2 proteins is obligatory for alpha(5.7-S) formation. One can obtain a beta2 protein preparation that when mixed with a pure alpha protein gives no alpha(5.7-S). Therefore, the interaction of alpha and beta2 proteins alone is not sufficient for the formation of alpha(5.7-S). When a mixture of alpha and beta2 proteins devoid of alpha(5.7-S) is added to extracts of trp deletion mutants, the novel species can be reconstituted in vitro only when deletions are used that carry at least the operator-proximal part of the trpB gene. Therefore, it is concluded that the alpha(5.7-S) species of tryptophan synthetase results from the interaction of the alpha protein, the beta2 protein, and a third component, beta', specified by the deoxyribonucleic acid defined by the end points of two trp deletion mutants.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference28 articles.

1. A rapid method for preparing crystalline /2 subunit oftryptophan synthetase of Escherichia coli in high yield;Adachi O.;J. Biol. Chem.,1974

2. Tryptophan synthetase f subunit. Application of genetic analysis to the study of primary structure;Cotton R. G. H.;J. Biol. Chem.,1972

3. Mutants of Escherichia coli defective in the B protein of tryptophan synthetase. II. Intragenic position;Crawford I. P.;Genetics,1964

4. Mutants of Escherichia coli defective in the B protein of tryptophan synthetase. III. Intragenic clustering;Crawford I. P.;Genetics,1970

5. On the separation of the tryptophan synthetase of Escherichia coli into two protein components;Crawford I. P.;Proc. Natl. Acad. Sci. U.S.A.,1959

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3