Joint Population Pharmacokinetic Analysis of Zidovudine, Lamivudine, and Their Active Intracellular Metabolites in HIV Patients

Author:

Bazzoli C.,Bénech H.,Rey E.,Retout S.,Salmon D.,Duval X.,Tréluyer J. M.,Mentré F.,

Abstract

ABSTRACTThe population pharmacokinetic parameters of zidovudine (AZT), lamivudine (3TC), and their active intracellular metabolites in 75 naïve HIV-infected patients receiving an oral combination of AZT and 3TC twice daily as part of their multitherapy treatment in the COPHAR2-ANRS 111 trial are described. Four blood samples per patient were taken after 2 weeks of treatment to measure drug concentrations at steady state. Plasma AZT and 3TC concentrations were measured in 73 patients, and among those, 62 patients had measurable intracellular AZT-TP and 3TC-TP concentrations. For each drug, a joint population pharmacokinetic model was developed and we investigated the influence of different covariates. We then studied correlations between the mean plasma and intracellular concentrations of each drug. A one-compartment model with first-order absorption and elimination best described the plasma AZT concentration, with an additional compartment for intracellular AZT-TP. A similar model but with zero-order absorption was found to adequately described concentrations of 3TC and its metabolite 3TC-TP. The half-lives of AZT and 3TC were 0.81 h (94.8%) and 2.97 h (39.2%), respectively, whereas the intracellular half-lives of AZT-TP and 3TC-TP were 10.73 h (69%) and 21.16 h (44%), respectively. We found particularly a gender effect on the apparent bioavailability of AZT, as well as on the mean plasma and intracellular concentrations of AZT, which were significantly higher in females than in males. Relationships between mean plasma drug and intracellular metabolite concentrations were also highlighted both for AZT and for 3TC. Simulation with the model of plasma and intracellular concentrations for once- versus twice-daily regimens suggested that a daily dosing regimen with double doses could be appropriate.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3