Hyperattenuated Recombinant Influenza A Virus Nonstructural-Protein-Encoding Vectors Induce Human Immunodeficiency Virus Type 1 Nef-Specific Systemic and Mucosal Immune Responses in Mice

Author:

Ferko Boris1,Stasakova Jana1,Sereinig Sabine1,Romanova Julia1,Katinger Dietmar1,Niebler Brigitte1,Katinger Hermann1,Egorov Andrej1

Affiliation:

1. Institut für Angewandte Mikrobiologie, Universität für Bodenkultur, A-1190 Vienna, Austria

Abstract

ABSTRACT We have generated recombinant influenza A viruses belonging to the H1N1 and H3N2 virus subtypes containing an insertion of the 137 C-terminal amino acid residues of the human immunodeficiency virus type 1 (HIV-1) Nef protein into the influenza A virus nonstructural-protein (NS1) reading frame. These viral vectors were found to be genetically stable and capable of growing efficiently in embryonated chicken eggs and tissue culture cells but did not replicate in the murine respiratory tract. Despite the hyperattenuated phenotype of influenza/NS-Nef viruses, a Nef and influenza virus (nucleoprotein)-specific CD8 + -T-cell response was detected in spleens and the lymph nodes draining the respiratory tract after a single intranasal immunization of mice. Compared to the primary response, a marked enhancement of the CD8 + -T-cell response was detected in the systemic and mucosal compartments, including mouse urogenital tracts, if mice were primed with the H1N1 subtype vector and subsequently boosted with the H3N2 subtype vector. In addition, Nef-specific serum IgG was detected in mice which were immunized twice with the recombinant H1N1 and then boosted with the recombinant H3N2 subtype virus. These findings may contribute to the development of alternative immunization strategies utilizing hyperattenuated live recombinant influenza virus vectors to prevent or control infectious diseases, e.g., HIV-1 infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3