The Hydrogenase Cytochrome b Heme Ligands of Azotobacter vinelandii Are Required for Full H 2 Oxidation Capability

Author:

Meek Laura1,Arp Daniel J.2

Affiliation:

1. Biochemistry and Biophysics Department1 and

2. Department of Botany and Plant Pathology,2 Oregon State University, Corvallis, Oregon 97331-2902

Abstract

ABSTRACT The hydrogenase in Azotobacter vinelandii , like other membrane-bound [NiFe] hydrogenases, consists of a catalytic heterodimer and an integral membrane cytochrome b . The histidines ligating the hemes in this cytochrome b were identified by H 2 oxidation properties of altered proteins produced by site-directed mutagenesis. Four fully conserved and four partially conserved histidines in HoxZ were substituted with alanine or tyrosine. The roles of these histidines in HoxZ heme binding and hydrogenase were characterized by O 2 -dependent H 2 oxidation and H 2 -dependent methylene blue reduction in vivo. Mutants H33A/Y (H33 replaced by A or Y), H74A/Y, H194A, H208A/Y, and H194,208A lost O 2 -dependent H 2 oxidation activity, H194Y and H136A had partial activity, and H97Y,H98A and H191A had full activity. These results suggest that the fully conserved histidines 33, 74, 194, and 208 are ligands to the hemes, tyrosine can serve as an alternate ligand in position 194, and H136 plays a role in H 2 oxidation. In mutant H194A/Y, imidazole (Imd) rescued H 2 oxidation activity in intact cells, which suggests that Imd acts as an exogenous ligand. The heterodimer activity, quantitatively determined as H 2 -dependent methylene blue reduction, indicated that the heterodimers of all mutants were catalytically active. H33A/Y had wild-type levels of methylene blue reduction, but the other HoxZ ligand mutants had significantly less than wild-type levels. Imd reconstituted full methylene blue reduction activity in mutants H194A/Y and H208A/Y and partial activity in H194,208A. These results indicate that structural and functional integrity of HoxZ is required for physiologically relevant H 2 oxidation, and structural integrity of HoxZ is necessary for full heterodimer-catalyzed H 2 oxidation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3