The C proteins of HeLa 40S nuclear ribonucleoprotein particles exist as anisotropic tetramers of (C1)3 C2.

Author:

Barnett S F,Friedman D L,LeStourgeon W M

Abstract

The C proteins (C1 and C2) of HeLa 40S heterogeneous nuclear ribonucleoprotein particles copurify under native conditions as a stable complex with a fixed molar protein ratio (S.F. Barnett, W.M. LeStourgeon, and D.L. Friedman, J. Biochem. Biophys. Methods 16:87-97, 1988). Gel filtration chromatography and velocity sedimentation analyses of these complexes revealed a large Stokes radius (6.2 nm) and a sedimentation coefficient of 5.8S. On the basis of these values and a partial specific volume of 0.70 cm3/g based on the amino acid composition, the molecular weight of the complex was calculated to be 135,500. This corresponds well to 129,056, the sequence-determined molecular weight of a (C1)3C2 tetramer. Reversible chemical cross-linking with dithiobis(succinimidyl propionate) and analysis of cross-linked and cleaved complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed that the C proteins exist as tetramers, most or all of which are composed of (C1)3C2. The tetramer is stable in a wide range of NaCl concentrations (0.09 to 2.0 M) and is not dissociated by 0.5% sodium deoxycholate. This stability is not the result of disulfide bonds or interactions with divalent cations. The hydrodynamic properties of highly purified C-protein tetramers are the same for C-protein complexes released from intact particles with RNase or high salt. These findings support previous studies indicating that the core particle protein stoichiometry of 40S heterogeneous nuclear ribonucleoproteins is N(3A1-3A2-1B1-1B2-3C1-1C2), where N = 3 to 4, and demonstrate that the C-protein tetramer is a fundamental structural element in these RNA-packaging complexes. The presence of at least three tetramers per 40S monoparticle, together with the highly anisotropic nature of the tetramer, suggesting that one-third of the 700-nucleotide pre-mRNA moiety packaged in monoparticles is associated through a sequence-independent mechanism with the C protein.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3