Author:
Powers S,O'Neill K,Wigler M
Abstract
Two mutant alleles of RAS2 were discovered that dominantly interfere with wild-type RAS function in the yeast Saccharomyces cerevisiae. An amino acid substitution which caused the dominant interference was an alanine for glycine at position 22 or a proline for alanine at position 25. Analogous mutations in human H-ras also dominantly inhibited RAS function when expressed in yeast cells. The inhibitory effects of the mutant RAS2 or H-ras genes could be overcome by overexpression of CDC25, but only in the presence of wild-type RAS. These results suggest that these mutant RAS genes interfere with the normal interaction of RAS and CDC25 proteins and suggest that this interaction is direct and has evolutionarily conserved features.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
147 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献