UV irradiation analysis of complementation between, and replication of, RNA-negative temperature-sensitive mutants of Newcastle disease virus

Author:

Peeples M E,Bratt M A

Abstract

Random UV irradiation-induced lesions destroy the infectivity of Newcastle disease virus (NDV) by blocking downstream transcription from the single viral promoter. The nucleocapsid-associated polypeptides most likely to be involved in RNA synthesis are located at the extreme ends of the genome: NP and P are promoter proximal genes, and L is the most distal gene. We attempted to order the two temperature-sensitive (ts) RNA-negative (RNA-) mutant groups of NDV by determining the UV target sizes for the complementing abilities of mutants A1 and E1. After UV irradiation, E1 was unable to complement A1, a result compatible with the A mutation lying in the L gene. In contrast, after UV irradiation, A1 was able to complement E1 for both virus production and viral protein synthesis, with a target size most consistent with the E mutation lying in the P gene. UV-irradiated virus was unable to replicate as indicated by its absence in the yields of multiply infected cells, either as infectious virus or as particles with complementing activity. After irradiation, ts mutant B1 delta P, with a non-ts mutation affecting the electrophoretic mobility of the P protein, complemented E1 in a manner similar to A1, but it did not amplify the expression of delta P in infected cells. This too is consistent with irradiated virus being unable to replicate despite the presence of the components needed for replication of E1. At high UV doses, A1 was able to complement E1 in a different, UV-resistant manner, probably by direct donation of input polypeptides. Multiplicity reactivation has previously been observed at high-multiplicity infection by UV-irradiation paramyxoviruses. In this case, virions which are noninfectious because they lack a protein component may be activated by a protein from irradiation virions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3