Effective Prevention of Microbial Biofilm Formation on Medical Devices by Low-Energy Surface Acoustic Waves

Author:

Hazan Zadik1,Zumeris Jona1,Jacob Harold1,Raskin Hanan1,Kratysh Gera1,Vishnia Moshe1,Dror Naama12,Barliya Tilda2,Mandel Mathilda2,Lavie Gad2

Affiliation:

1. Nanovibronix Corporation, Nesher

2. Institute of Hematology and Blood Center, Sheba Medical Center, Tel-Hashomer, Israel

Abstract

ABSTRACT Low-energy surface acoustic waves generated from electrically activated piezo elements are shown to effectively prevent microbial biofilm formation on indwelling medical devices. The development of biofilms by four different bacteria and Candida species is prevented when such elastic waves with amplitudes in the nanometer range are applied. Acoustic-wave-activated Foley catheters have all their surfaces vibrating with longitudinal and transversal dispersion vectors homogeneously surrounding the catheter surfaces. The acoustic waves at the surface are repulsive to bacteria and interfere with the docking and attachment of planktonic microorganisms to solid surfaces that constitute the initial phases of microbial biofilm development. FimH-mediated adhesion of uropathogenic Escherichia coli to guinea pig erythrocytes was prevented at power densities below thresholds that activate bacterial force sensor mechanisms. Elevated power densities dramatically enhanced red blood cell aggregation. We inserted Foley urinary catheters attached with elastic-wave-generating actuators into the urinary tracts of male rabbits. The treatment with the elastic acoustic waves maintained urine sterility for up to 9 days compared to 2 days in control catheterized animals. Scanning electron microscopy and bioburden analyses revealed diminished biofilm development on these catheters. The ability to prevent biofilm formation on indwelling devices and catheters can benefit the implanted medical device industry.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference25 articles.

1. An, Y. H., R. B. Dickinson, and R. J. Doyle. 2000. Mechanisms of bacterial adhesion and pathogenesis of implant and tissue infections, p. 1-21. In Y. H. An and R. J. Friedman (ed.), Handbook of bacterial adhesion: principles, methods and applications. Humana Press, Totowa, N.J.

2. Brozel, V. S., G. M. Strydom, and T. E. Cloete. 1995. A method for the study of de novo protein synthesis in Pseudomonas aeruginosa after attachment. Biofouling8:195-210.

3. Carmen, J. C., B. L. Roeder, J. L. Nelson, R. L. Ogilvie, R. A. Robison, G. B. Schaalje, and W. G. Pitt. 2005. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am. J. Infect. Control33:78-82.

4. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa

5. Donskoj, L. B., O. K. Keller, and G. S. Kratysh. 1982. Ultrazvukovije elektrotechnologiceskije ustanovki. InEnergija, p. 149-192. Energiosdat, St. Petersburg, Russia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3