Enucleated L929 Cells Support Invasion, Differentiation, and Multiplication of Trypanosoma cruzi Parasites

Author:

Coimbra Vanessa C.1,Yamamoto Denise1,Khusal Ketna G.1,Atayde Vanessa Diniz1,Fernandes Maria Cecília1,Mortara Renato A.1,Yoshida Nobuko1,Alves Maria Julia M.2,Rabinovitch Michel1

Affiliation:

1. Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil

2. Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil

Abstract

ABSTRACT Cell infection with Trypanosoma cruzi , the agent of Chagas’ disease, begins with the uptake of infective trypomastigotes within phagosomes and their release into the cytosol, where they transform into replicating amastigotes; the latter, in turn, differentiate into cytolytically released and infective trypomastigotes. We ask here if the T. cruzi infection program can develop in enucleated host cells. Monolayers of L929 cells, enucleated by centrifugation in the presence of cytochalasin B and kept at 34°C to extend the survival of cytoplasts, were infected with parasites of the CL strain. Percent infection, morphology, stage-specific markers, and numbers of parasites per cell were evaluated in nucleated and enucleated cells, both of which were present in the same preparations. Parasite uptake, differentiation and multiplication of amastigotes, development of epimastigote- and trypomastigote-like forms, and initial cytolytic release of parasites were all documented for cytoplasts and nucleated cells. Although the doubling times were similar, parasite loads at 48 and 72 h were significantly lower in the cytoplasts than in nucleated cells. Similar results were obtained with the highly virulent strain Y as well as with strains CL-14 and G, which exhibit low virulence for mice. Cytoplasts could also be infected with the CL strain 24 or 48 h after enucleation. Thus, infection of cells by T. cruzi can take place in enucleated host cells, i.e., in the absence of modulation of chromosomal and nucleolar gene transcription and of RNA modification and processing in the nucleus.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3