Replication of Hepatitis C Virus (HCV) RNA in Mouse Embryonic Fibroblasts: Protein Kinase R (PKR)-Dependent and PKR-Independent Mechanisms for Controlling HCV RNA Replication and Mediating Interferon Activities

Author:

Chang Kyung-Soo1,Cai Zhaohui1,Zhang Chen1,Sen Ganes C.2,Williams Bryan R. G.23,Luo Guangxiang1

Affiliation:

1. Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, Kentucky 40536-0298

2. Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195

3. Monash Institute of Medical Research, Monash University, Melbourne, Australia

Abstract

ABSTRACT Hepatitis C virus (HCV) infection causes chronic hepatitis and is currently treated with alpha interferon (IFN-α)-based therapies. The underlying mechanisms of chronic HCV infection and IFN-based therapies, however, have not been defined. Protein kinase R (PKR) was implicated in the control of HCV replication and mediation of IFN-induced antiviral response. In this report, we demonstrate that a subgenomic RNA replicon of genotype 2a HCV replicated efficiently in mouse embryonic fibroblasts (MEFs), as determined by cell colony formation efficiency and the detection of HCV proteins and both positive- and negative-strand RNAs. Additionally, the subgenomic HCV RNA was found to replicate more efficiently in the PKR knockout (PKR −/− ) MEF than in the wild-type (PKR +/+ ) MEF. The knockdown expression of PKR by specific small interfering RNAs significantly enhanced the level of HCV RNA replication, suggesting that PKR is involved in the control of HCV RNA replication. The level of ISG56 (p56) was induced by HCV RNA replication, indicating the activation of PKR-independent antiviral pathways. Furthermore, IFN-α/β inhibited HCV RNA replication in PKR −/− MEFs as efficiently as in PKR +/+ MEFs. These findings demonstrate that PKR-independent antiviral pathways play important roles in controlling HCV replication and mediating IFN-induced antiviral effect. Our findings also provide a foundation for the development of transgenic mouse models of HCV replication and set a stage to further define the roles of cellular genes in the establishment of chronic HCV infection and the mediation of intracellular innate antiviral response by using MEFs derived from diverse gene knockout animals.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3