Humanized Mice Show Clinical Signs of Dengue Fever according to Infecting Virus Genotype

Author:

Mota Javier1,Rico-Hesse Rebeca1

Affiliation:

1. Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas

Abstract

ABSTRACT We demonstrated that the infection of humanized NOD- scid IL2r γ null mice with different strains (representing the four genotypes) of dengue virus serotype 2 (DEN-2) can induce the development of human-like disease, including fever, viremia, erythema, and thrombocytopenia. Newborn mice were irradiated and received transplants by intrahepatic inoculation of human cord blood-derived hematopoietic progenitor cells (CD34 + ). After 6 weeks, mouse peripheral blood was tested by flow cytometry to determine levels of human lymphocytes (CD45 + cells); rates of reconstitution ranged from 16 to 80% (median, 52%). Infection (with approximately 10 6 PFU, the equivalent of a mosquito bite) of these humanized mice with eight low-passage-number strains produced a high viremia extending to days 12 to 18 postinfection. We observed a significant decrease in platelets at day 10 in most of the mice and an increase in body temperature (fever) and erythema (rash) in comparison with humanized mice inoculated with cell culture medium only. Comparison of Southeast (SE) Asian and other genotype viruses (American, Indian, and West African) in this model showed significant differences in magnitude and duration of viremia and rash, with the SE Asian viruses always being highest. Indian genotype viruses produced lower viremias and less thrombocytopenia than the others, and West African (sylvatic) viruses produced the shortest periods of viremia and the lowest rash measurements. These results correlate with virulence and transmission differences described previously for primary human target cells and whole mosquitoes and may correlate with epidemiologic observations around the world. These characteristics make this mouse model ideal for the study of dengue pathogenesis and the evaluation of vaccine attenuation and antivirals.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Four Humanized NOD-Derived Mouse Models for Dengue Virus-2 Infection;Pathogens;2024-07-30

2. Mice, myeloid cells, and dengue: a new model for unraveling vascular leakage mysteries;Frontiers in Microbiology;2024-03-14

3. Animal Models of Infectious Diseases;Animal Models in Research;2024

4. Animal Models for Infectious Disease Vaccine Development;A Comprehensive Guide to Toxicology in Nonclinical Drug Development;2024

5. Flying under the radar – impact and factors influencing asymptomatic DENV infections;Frontiers in Cellular and Infection Microbiology;2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3