Pseudomonas aeruginosa MipA-MipB envelope proteins act as new sensors of polymyxins

Author:

Janet-Maitre Manon1ORCID,Job Viviana1ORCID,Bour Maxime23,Robert-Genthon Mylène1ORCID,Brugière Sabine4,Triponney Pauline3,Cobessi David5ORCID,Couté Yohann4ORCID,Jeannot Katy236ORCID,Attrée Ina1ORCID

Affiliation:

1. Team Bacterial Pathogenesis and Cellular Responses, University Grenoble Alpes, IBS, UMR5075, Grenoble, France

2. UMR6249 Chrono-Environnement, UFR Santé, University of Franche-Comté, Besançon, France

3. French National Reference Center for Antibiotic Resistance, Besançon, France

4. University Grenoble Alpes, CEA, INSERM, UA13 BGE, CNRS, CEA, FranceGrenoble

5. University Grenoble Alpes, IBS, UMR5075, Team Synchrotron, Grenoble, France

6. Department of Bacteriology, Teaching Hospital of Besançon, Besançon, France

Abstract

ABSTRACT Due to the rising incidence of antibiotic-resistant infections, the last-line antibiotics, polymyxins, have resurged in the clinics in parallel with new bacterial strategies of escape. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa develops resistance to colistin/polymyxin B by distinct molecular mechanisms, mostly through modification of the lipid A component of the LPS by proteins encoded within the arnBCDATEF-ugd ( arn ) operon. In this work, we characterized a polymyxin-induced operon named mipBA , present in P. aeruginosa strains devoid of the arn operon. We showed that mipBA is activated by the ParR/ParS two-component regulatory system in response to polymyxins. Structural modeling revealed that MipA folds as an outer-membrane β-barrel, harboring an internal negatively charged channel, able to host a polymyxin molecule, while the lipoprotein MipB adopts a β-lactamase fold with two additional C-terminal domains. Experimental work confirmed that MipA and MipB localize to the bacterial envelope, and they co-purify in vitro . Nano differential scanning fluorimetry showed that polymyxins stabilized MipA in a specific and dose-dependent manner. Mass spectrometry-based quantitative proteomics on P. aeruginosa membranes demonstrated that ∆ mipBA synthesized fourfold less MexXY-OprA proteins in response to polymyxin B compared to the wild-type strain. The decrease was a direct consequence of impaired transcriptional activation of the mex operon operated by ParR/ParS. We propose MipA/MipB to act as membrane (co)sensors working in concert to activate ParS histidine kinase and help the bacterium to cope with polymyxin-mediated envelope stress through synthesis of the efflux pump, MexXY-OprA. IMPORTANCE Due to the emergence of multidrug-resistant isolates, antibiotic options may be limited to polymyxins to eradicate Gram-negative infections. Pseudomonas aeruginosa , a leading opportunistic pathogen, has the ability to develop resistance to these cationic lipopeptides by modifying its lipopolysaccharide through proteins encoded within the arn operon. Herein, we describe a sub-group of P. aeruginosa strains lacking the arn operon yet exhibiting adaptability to polymyxins. Exposition to sub-lethal polymyxin concentrations induced the expression and production of two envelope-associated proteins. Among those, MipA, an outer-membrane barrel, is able to specifically bind polymyxins with an affinity in the 10-µM range. Using membrane proteomics and phenotypic assays, we showed that MipA and MipB participate in the adaptive response to polymyxins via ParR/ParS regulatory signaling. We propose a new model wherein the MipA-MipB module functions as a novel polymyxin sensing mechanism.

Funder

Agence Nationale de la Recherche

Université Grenoble Alpes

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3