Obligatory Role of Gamma Interferon for Host Survival in a Murine Model of Infection with Burkholderia pseudomallei

Author:

Santanirand P.1,Harley V. S.1,Dance D. A. B.2,Drasar B. S.1,Bancroft G. J.1

Affiliation:

1. Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT,1 and

2. Public Health Laboratory, Derriford Hospital, Plymouth PL6 8DH,2 United Kingdom

Abstract

ABSTRACT Burkholderia pseudomallei , the causative agent of melioidosis, is a gram-negative bacterium capable of causing either acute lethal sepsis or chronic but eventually fatal disease in infected individuals. However, despite the clinical importance of this infection in areas where it is endemic, there is essentially no information on the mechanisms of protective immunity to the bacterium. We describe here a murine model of either acute or chronic infection with B. pseudomallei in Taylor Outbred (TO) mice which mimics many features of the human pathology. Intraperitoneal infection of TO mice at doses of >10 6 CFU resulted in acute septic shock and death within 2 days. In contrast, at lower doses mice were able to clear the inoculum from the liver and spleen over a 3- to 4-week period, but persistence of the organism at other sites resulted in a chronic infection of between 2 and 16 months duration which was eventually lethal in all of the animals tested. Resistance to acute infection with B. pseudomallei was absolutely dependent upon the production of gamma interferon (IFN-γ) in vivo. Administration of neutralizing monoclonal antibody against IFN-γ lowered the 50% lethal dose from >5 × 10 5 to ca. 2 CFU and was associated with 8,500- and 4,400-fold increases in the bacterial burdens in the liver and spleen, respectively, together with extensive destruction of lymphoid architecture in the latter organ within 48 h. Neutralization of either tumor necrosis factor alpha or interleukin-12 but not granulocyte-macrophage colony-stimulating factor, also increased susceptibility to infection in vivo. Together, these results provide the first evidence of a host protective mechanism against B. pseudomallei . The rapid production of IFN-γ within the first day of infection determines whether the infection proceeds to an acute lethal outcome or becomes chronic.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3