Affiliation:
1. Department of Microbiology, Kagawa Medical School, Japan.
Abstract
The colH gene encoding a collagenase was cloned from Clostridium histolyticum JCM 1403. Nucleotide sequencing showed a major open reading frame encoding a 116-kDa protein of 1,021 amino acid residues. The deduced amino acid sequence contains a putative signal sequence and a zinc metalloprotease consensus sequence, HEXXH. A 116-kDa collagenase and a 98-kDa gelatinase were copurified from culture supernatants of C. histolyticum. While the former degraded both native and denatured collagen, the latter degraded only denatured collagen. Peptide mapping with V8 protease showed that all peptide fragments, except a few minor ones, liberated from the two enzymes coincided with each other. Analysis of the N-terminal amino acid sequence of the two enzymes revealed that their first 24 amino acid residues were identical and coincided with those deduced from the nucleotide sequence. These results indicate that the 98-kDa gelatinase is generated from the 116-kDa collagenase by cleaving off the C-terminal region, which could be responsible for binding or increasing the accessibility of the collagenase to native collagen fibers. The role of the C-terminal region in the functional and evolutional aspects of the collagenase was further studied by comparing the amino acid sequence of the C. histolyticum collagenase with those of three homologous enzymes: the collagenases from Clostridium perfringens and Vibrio alginolyticus and Achromobacter lyticus protease I.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献