Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer

Author:

Walker S G1,Karunaratne D N1,Ravenscroft N1,Smit J1

Affiliation:

1. Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.

Abstract

Strains of Caulobacter crescentus express a paracrystalline surface layer (S-layer) consisting of the protein RsaA. Mutants of C. crescentus NA1000 and CB2, isolated for their ability to grow in the absence of calcium ions, uniformly no longer had the S-layer attached to the cell surface. However, RsaA was still produced, and when colonies grown on calcium-sufficient medium were examined, large two-dimensional arrays of S-layer were found intermixed with the cells. Such arrays were not found in calcium-deficient medium even when high levels of magnesium ions were provided. The arrays could be disrupted with divalent ion chelators and more readily with the calcium-selective ethylene glycol-bis (beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). Thus, the outer membrane surface was not needed as a template for self-assembly, but calcium likely was. The cell surface and S-layer gene of assembly-defective mutants of NA1000 were examined to determine the basis of the S-layer surface attachment defect. Mutants had no detectable alteration in the rough lipopolysaccharide (LPS) or a characterized capsular polysaccharide, but another polysaccharide molecule was greatly reduced or absent in all calcium-independent mutants. The molecule was shown to be a smooth LPS with a core sugar and fatty acid complement identical to those of the rough LPS and an O polysaccharide of homogeneous length, tentatively considered to be composed of 4,6-dideoxy-4-amino hexose, 3,6-dideoxy-3-amino hexose, and glycerol in equal proportions. This molecule (termed SLPS) was detectable by surface labeling with a specific antiserum only when the S-layer was not present. The rsaA genes from three calcium-independent mutants were cloned and expressed in an S-layer-negative, SLPS-positive strain. A normal S-layer was produced, ruling out defects in rsaA in these cases. It is proposed that SLPS is required for S-layer surface attachment, possibly via calcium bridging. The data support the possibility that calcium binding is required to prevent an otherwise lethal effect of SLPS. If true, mutations that eliminate the O polysaccharide of SLPS eliminate the lethal effects of calcium-deprived SLPS, at the expense of S-layer attachment.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3