Phylogenetic depth of S10 and spc operons: cloning and sequencing of a ribosomal protein gene cluster from the extremely thermophilic bacterium Thermotoga maritima

Author:

Sanangelantoni A M1,Bocchetta M1,Cammarano P1,Tiboni O1

Affiliation:

1. Dipartimento di Genetica e Microbiologia A. Buzzati Traverso, Università di Pavia, Italy.

Abstract

A segment of Thermotoga maritima DNA spanning 6,613 bp downstream from the gene tuf for elongation factor Tu was sequenced by use of a chromosome walking strategy. The sequenced region comprised a string of 14 tightly linked open reading frames (ORFs) starting 50 bp downstream from tuf. The first 11 ORFs were identified as homologs of ribosomal protein genes rps10, rpl3, rpl4, rpl23, rpl2, rps19, rpl22, rps3, rpl16, rpl29, and rps17 (which in Escherichia coli constitute the S10 operon, in that order); the last three ORFs were homologous to genes rpl14, rpl24, and rpl5 (which in E. coli constitute the three promoter-proximal genes of the spectinomycin operon). The 14-gene string was preceded by putative -35 and -10 promoter sequences situated 5' to gene rps10, within the 50-bp spacing between genes tuf and rps10; the same region exhibited a potential transcription termination signal for the upstream gene cluster (having tuf as the last gene) but displayed also the potential for formation of a hairpin loop hindering the terminator; this suggests that transcription of rps10 and downstream genes may start farther upstream. The similar organization of the sequenced rp genes in the deepest-branching bacterial phyla (T. maritima) and among Archaea has been interpreted as indicating that the S10-spc gene arrangement existed in the (last) common ancestor. The phylogenetic depth of the Thermotoga lineage was probed by use of r proteins as marker molecules: in all except one case (S3), Proteobacteria or the gram-positive bacteria, and not the genus Thermotoga, were the deepest-branching lineage; in only two cases, however, was the inferred branching order substantiated by bootstrap analysis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3