Affiliation:
1. Department of Plant and Microbial Biology, The University of California, Berkeley, California 94720-3102
Abstract
ABSTRACT
Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, such as
Neurospora crassa
, nonself recognition and heterokaryon incompatibility (HI) are regulated by genetic differences at
het
loci. In
N. crassa
, mutations at the
vib-1
locus suppress nonself recognition and HI mediated by genetic differences at
het-c/pin-c
,
mat
, and
un-24/het-6. vib-1
is a homolog of
Saccharomyces cerevisiae NDT80
, which is a transcriptional activator of genes during meiosis. For this study, we determined that
vib-1
encodes a nuclear protein and showed that VIB-1 localization varies during asexual reproduction and during HI.
vib-1
is required for the expression of genes involved in nonself recognition and HI, including
pin-c
,
tol
, and
het-6
; all of these genes encode proteins containing a HET domain.
vib-1
is also required for the production of downstream effectors associated with HI, including the production of extracellular proteases upon carbon and nitrogen starvation. Our data support a model in which mechanisms associated with starvation and nonself recognition/HI are interconnected. VIB-1 is a major regulator of responses to nitrogen and carbon starvation and is essential for the expression of genes involved in nonself recognition and death in
N. crassa
.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献