VIB-1 Is Required for Expression of Genes Necessary for Programmed Cell Death in Neurospora crassa

Author:

Dementhon Karine1,Iyer Gopal1,Glass N. Louise1

Affiliation:

1. Department of Plant and Microbial Biology, The University of California, Berkeley, California 94720-3102

Abstract

ABSTRACT Nonself recognition during somatic growth is an essential and ubiquitous phenomenon in both prokaryotic and eukaryotic species. In filamentous fungi, nonself recognition is also important during vegetative growth. Hyphal fusion between genetically dissimilar individuals results in rejection of heterokaryon formation and in programmed cell death of the fusion compartment. In filamentous fungi, such as Neurospora crassa , nonself recognition and heterokaryon incompatibility (HI) are regulated by genetic differences at het loci. In N. crassa , mutations at the vib-1 locus suppress nonself recognition and HI mediated by genetic differences at het-c/pin-c , mat , and un-24/het-6. vib-1 is a homolog of Saccharomyces cerevisiae NDT80 , which is a transcriptional activator of genes during meiosis. For this study, we determined that vib-1 encodes a nuclear protein and showed that VIB-1 localization varies during asexual reproduction and during HI. vib-1 is required for the expression of genes involved in nonself recognition and HI, including pin-c , tol , and het-6 ; all of these genes encode proteins containing a HET domain. vib-1 is also required for the production of downstream effectors associated with HI, including the production of extracellular proteases upon carbon and nitrogen starvation. Our data support a model in which mechanisms associated with starvation and nonself recognition/HI are interconnected. VIB-1 is a major regulator of responses to nitrogen and carbon starvation and is essential for the expression of genes involved in nonself recognition and death in N. crassa .

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3