Inactivation of the Lipopeptide Antibiotic Daptomycin by Hydrolytic Mechanisms

Author:

D'Costa Vanessa M.,Mukhtar Tariq A.,Patel Tejal,Koteva Kalinka,Waglechner Nicholas,Hughes Donald W.,Wright Gerard D.,De Pascale Gianfranco

Abstract

ABSTRACTThe lipopeptide daptomycin is a member of the newest FDA-approved antimicrobial class, exhibiting potency against a broad range of Gram-positive pathogens with only rare incidences of clinical resistance. Environmental bacteria harbor an abundance of resistance determinants orthologous to those in pathogens and thus may serve as an early-warning system for future clinical emergence. A collection of morphologically diverse environmental actinomycetes demonstrating unprecedented frequencies of daptomycin resistance and high levels of resistance by antibiotic inactivation was characterized to elucidate modes of drug inactivation.In vivostudies revealed that hydrolysis plays a key role, resulting in one or both of the following structural modifications: ring hydrolysis resulting in linearization (in 44% of inactivating isolates) or deacylation of the lipid tail (29%). Characterization of the mechanism in actinomycete WAC4713 (aStreptomycessp. with an MIC of 512 μg/ml) demonstrated a constitutive resistance phenotype and established daptomycin's circularizing ester linkage to be the site of hydrolysis. Characterization of the hydrolase responsible revealed it to be likely a serine protease. These studies suggested that daptomycin is susceptible to general proteolytic hydrolysis, which was further supported by studies using proteases of diverse origin. These findings represent the first comprehensive characterization of daptomycin inactivation in any bacterial class and may not only presage a future mechanism of clinical resistance but also suggest strategies for the development of new lipopeptides.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3