Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells

Author:

Arroyo R1,Alderete J F1

Affiliation:

1. Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758.

Abstract

The role of cysteine proteinases in adherence of Trichomonas vaginalis NYH 286 to HeLa and human vaginal epithelial cells was evaluated. Only pretreatment of trichomonads, but not epithelial cells, with N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), an inhibitor of trichomonad cysteine proteinases, greatly diminished the ability of T. vaginalis to recognize and bind to epithelial cells. Leupeptin and L-1-tosylamide-2-phenylethyl chloromethyl ketone, other cysteine proteinase inhibitors, also decreased T. vaginalis cytadherence. Parasites incubated with TLCK and washed extensively still did not adhere to cells at levels equal to those seen for control trichomonads treated with phosphate-buffered saline or culture medium alone. Exposure of TLCK-treated organisms with other cysteine proteinases restored cytadherence levels, indicating that proteinase action on the parasite surface is prerequisite for host cell attachment. Concentrations of TLCK which inhibited cytadherence did not alter the metabolism of T. vaginalis, as determined by metabolic labeling of trichomonad proteins; the protein patterns of T. vaginalis in the presence and absence of TLCK were identical. Kinetics of TLCK-mediated inhibition of cytadherence of other T. vaginalis isolates with different levels of epithelial-cell parasitism were similar to the concentration-dependent inhibition seen for isolate NYH 286. Incubation of TLCK-treated, washed organisms in growth medium resulted in regeneration of adherence. Finally, treatment of T. vaginalis organisms with proteinase inhibitors for abrogation of cytadherence effectively rendered the trichomonads unable to kill host cells, which is consistent with the contact-dependent nature of host cytotoxicity. These data show for the first time the involvement of T. vaginalis cysteine proteinases in parasite attachment to human epithelial cells. These results have implications for future pharmacologic intervention at a key step in infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference31 articles.

1. Ackers J. P. 1982. Immunology of amebas giardia and trichomonads p. 420-430. In A. J. Nahmias and R. J. O'Reilly (ed.) Immunology of human infection vol. 9 part II. Viruses and parasites; immunodiagnosis and prevention of infectious diseases. Plenum Publishing Corp. New York.

2. Antigen analysis of several pathogenic strains of Trichomonas vaginalis;Alderete J. F.;Infect. Immun.,1983

3. Identification of immunogenic and antibody-binding membrane proteins of pathogenic Trichomonas vaginalis;Alderete J. F.;Infect. Immun.,1983

4. Specific parasitism of purified vaginal epithelial cells by Trichomonas vaginalis;Alderete J. F.;Infect. Immun.,1988

5. Specific nature of Trichomonas vaginalis parasitism of host cell surfaces;Alderete J. F.;Infect. Immun.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3