Transcriptional Coactivator PC4, a Chromatin-Associated Protein, Induces Chromatin Condensation

Author:

Das Chandrima1,Hizume Kohji2,Batta Kiran1,Kumar B. R. Prashanth1,Gadad Shrikanth S.1,Ganguly Semanti3,Lorain Stephanie4,Verreault Alain4,Sadhale Parag P.3,Takeyasu Kunio2,Kundu Tapas K.1

Affiliation:

1. Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India

2. Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan

3. Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India

4. Chromosome Dynamics Laboratory, Cancer Research, Clare Hall Laboratories, Blanche Lane, South Mimms, United Kingdom

Abstract

ABSTRACT Human transcriptional coactivator PC4 is a highly abundant multifunctional protein which plays diverse important roles in cellular processes, including transcription, replication, and repair. It is also a unique activator of p53 function. Here we report that PC4 is a bona fide component of chromatin with distinct chromatin organization ability. PC4 is predominantly associated with the chromatin throughout the stages of cell cycle and is broadly distributed on the mitotic chromosome arms in a punctate manner except for the centromere. It selectively interacts with core histones H3 and H2B; this interaction is essential for PC4-mediated chromatin condensation, as demonstrated by micrococcal nuclease (MNase) accessibility assays, circular dichroism spectroscopy, and atomic force microscopy (AFM). The AFM images show that PC4 compacts the 100-kb reconstituted chromatin distinctly compared to the results seen with the linker histone H1. Silencing of PC4 expression in HeLa cells results in chromatin decompaction, as evidenced by the increase in MNase accessibility. Knocking down of PC4 up-regulates several genes, leading to the G 2 /M checkpoint arrest of cell cycle, which suggests its physiological role as a chromatin-compacting protein. These results establish PC4 as a new member of chromatin-associated protein family, which plays an important role in chromatin organization.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3