Characterization, distribution, and localization of ISRl2, and insertion sequence element isolated from Rhizobium leguminosarum bv. viciae

Author:

Mazurier S I1,Rigottier-Gois L1,Amarger N1

Affiliation:

1. Institut National de la Recherche Agronomique, Laboratoire de Microbiologie des Sols, Dijon, France. mazurier@dijon.inra.fr

Abstract

An insertion sequence (IS) element, ISR12, from Rhizobium leguminosarum bv. viciae strain MSDJ4184 was isolated by insertional inactivation of the sacRB gene of pSUP104-sac, which allows positive selection. ISRl2 is 932 bp long, is flanked by 17-bp imperfect terminal inverted repeats, and generated a 3-bp target site duplication. ISRl2 was found to be 63 to 77% homologous to insertion elements of the IS5 group of the IS4 superfamily. A probe incorporating a full-length copy of ISRl2 was used to screen genomic DNAs from a collection of strains and from two field populations of R. leguminosarum to detect and estimate the copy numbers of homologous sequences. Among the collection of 63 strains representing the different species and genera of members of the family Rhizobiaceae, homology to ISRl2 was found within strains belonging to Sinorhizobium meliloti and S. fredii; within four of the six recognized Rhizobium species. R. leguminosarum, R. tropici, R. etli, and R. galegae; and within Rhizobium sp. (Phaseolus) genomic species 2. The apparent copy numbers of ISRl2 varied from one to eight. Among 139 isolates of R. leguminosarum from two field populations, homology to ISRl2 was detected in 91% of the isolates from one site and in 17% from the other. Analysis of the 95 isolates that hybridize to ISRl2 revealed a total of 20 distinct hybridization patterns composed of one to three bands. Probing blots of Eckhardt gels showed that sequences with homology to ISRl2 may be found on plasmids or the chromosome. Analysis of their genomic distribution demonstrated relationships and diversity among the R. leguminosarum isolates tested.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3